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ABSTRACT
The study investigated the effects of prime-and-rinse approach
using 15% MDP (10-methacryloyloxydecyl dihydrogen phos-
phate)-containing primer on the enamel micro-tensile bond
strengths (MTBS) of (ultra-) mild self-etch adhesives, enamel surfa-
ces and enamel-resin interfaces. The buccal enamel surfaces of 69
human third molars were polished and randomly assigned to
three groups: Group A (control, self-etch approach): Polished
enamel surfaces were not further pre-treated. The enamel surfaces
were acid-etched (Group B, (selective) enamel etching) or primed
with 15% MDP-containing primer (Group C, prime-and-rinse
approach) for 15 s and thoroughly water-sprayed. The enamel sur-
faces were applied with self-etch adhesives and placed with com-
posite resins (Adper Easy Oneþ Filtek Z350 (3M ESPE); Clearfil S3
BondþClearfil Majesty (Kuraray-Noritake Co.); G BondþGradia
Direct (GC); iBondþCharisma (Heraeus-Kulzer)), respectively. The
specimens were prepared for MTBS test and scanning/transmis-
sion electron microscopy observations. Compared with group A,
groups B and C produced significantly higher enamel MTBS
(p< .01), regardless of the adhesives used. Groups B and C pos-
sessed similar enamel MTBS (p> .05). The SEM findings showed
that smear layer remained on the polished enamel surface was
completely removed by acid etching and almost completely
removed by prime-and-rinse approach. The TEM microphoto-
graphs reveal that smear layer was detectable at the resin-enamel
interface in group A, not in groups B and C. The novel prime-
and-rinse approach using MDP-containing primer before the
application of (ultra-) mild self-etch adhesives could greatly
increase the enamel MTBS. That might be an alternative to select-
ive enamel etching.
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Introduction

Self-etch adhesive systems have been widely used in the clinic due to the lower tech-
nique sensitivity, shorter clinical application time and less incidence of postoperative
sensitivity when compared to the etch-and-rinse adhesive systems [1–5]. However,
some concerns have been raised with regard to their effectiveness of bonding to
enamel, especially when the (ultra-) mild self-etch adhesives are used [6–8]. Previous
reports demonstrated the low enamel bond strengths of (ultra-) mild self-etch adhe-
sives [9–14].

In order to increase the enamel bond strengths, selective enamel etching with
phosphoric acid has been strongly recommended to be used prior to application of
(ultra-) mild self-etching adhesives [15–17]. However, selective enamel etching is
extremely difficult to confine within peripheral enamel margin surrounding a cavity,
since etchant may unintentionally flow over enamel-dentin junction (EDJ) to over-
etch dentin [5,18,19]. That definitely deteriorates the dentin bonding effectiveness of
(ultra-) mild self-etch adhesives [20]. That can be explained by fact that acid-etching
could completely demineralize dentin surface, exposing a mineral-depleted collagen
network [21], and subsequent application of self-etch adhesive will produce an over-
etching layer at resin–dentin interface, weakening the dentin bond.

Previous researches showed that some functional monomers such as phosphoric
acid esters (PAEs) and carboxylic acids have the capability of decalcifying and adher-
ing to HAp simultaneously [22–26]. We demonstrated that the chemical interaction
of phosphoric acid esters (PAEs) with HAp produced one water-soluble PAEs-HAp
complex revealing etching ability and another water-insoluble PAEs-HAp complex
possessing chemical bonding between them [27]. In other words, the less soluble the
monomer-Ca salts, the more intense and stable the chemical bonding to the HAp-a
main component of tooth hard tissues [28]. Likewise, self-etch adhesives applied on
enamel and dentin surface will simultaneously produce some water-soluble, slightly
water-soluble and water-insoluble monomer-Ca salts and various species of calcium
phosphate. Afterward, they will deposit on the surface of the tooth hard tissues along
with evaporation of the solvent by air-drying and subsequently be in situ polymerized
with adhesive monomers in the hybrid layer. That might result in the weakest point
of the self-etch adhesive systems and thus may affect the bonding perform-
ance [29,30].

Ten-methacryloyloxydecyl dihydrogen phosphate (10-MDP) is a promising func-
tional acidic monomer used in some (ultra-) mild self-etch adhesives. MDP can
partially demineralize the enamel/dentin surface, simultaneously resulting in water-
soluble and water-insoluble monomer-Ca (MDP-Ca) salts in the own acidic solution
on the enamel/dentin surfaces [31]. Prime-and-rinse using MDP-containing primer
can demineralize enamel/dentin surface and leave some water-insoluble monomer-Ca
salts on the enamel/dentin surface, however, the etch-and-rinse approach only demin-
eralizes the enamel/dentin surface without any formation of soluble and insoluble
monomer-Ca salts. Therefore, we proposed prime-and-rinse approach for distinguish-
ing from the etch-and-rinse approach [30]. In our previous research, a prime-and-
rinse approach using MDP-containing primer replaced phosphoric acid etching
before application of etch-and-rinse adhesive, or after acid, etching could increase
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enamel bond strength [25,30,32]. Furthermore, the prime-and-rinse approach using
MDP-containing primer could greatly increase the dentin bond strength of mild self-
etch adhesives [33]. However, the prime-and-rinse approach using MDP-containing
primer has never been studied for enamel bonding before application of (ultra-) mild
self-etch adhesives.

The purpose of this study was to investigate the effects of prime-and-rinse
approach using MDP-containing primer on enamel bond strength of (ultra-) mild
self-etch adhesives and enamel-adhesive bond surfaces. The null hypotheses tested in

Table 1. All the materials and steps of application used in the study.
Materials (Batch, code) Manufacturers pH Compositions Steps of application

Clearfil S3 Bond
(C90008, S3)

Kuraray-Noritake,
Tokyo, Japan

�2.7
10-MDP, HEMA, Bis-
GMA, ethanol, water,
silanized colloidal sil-
ica, camphorquinone

Apply and leave for
20 s, strongly air-blow
for approximately 5 s,
and light-cure for 10 s

Clearfil Majesty
A3 (5F0004)

– Bis-GMA, TEGDMA,
hydrophobic aromatic
dimethacrylate, sila-
nated barium glass
filler, Pre-polymerized
organic filler, initiators,
accelerators, pigments.

Place 2mm in two
increments and light-
cure for 40 s,
respectively.

G Bond (1504021, GB) GC, Tokyo, Japan �2
4-MET, phosphoric
ester-monomer, UDMA,
TEGDMA, acetone,
water, silica filler,
photo-initi-
ator, stabilizer

Apply and leave undis-
turbed for 10 s,
strongly air-blow for
approximately 5 s, and
light-cure for 10 s.

Gradia Direct
A3 (1409011)

– UDMA, silica powder,
alumino-silicate glass,
organic filler

Place 2mm in two
increments and light-
cured for 40 s,
respectively.

Adper Easy One
(576919, AEO)

3M ESPE, Seefeld, Germany �2.4 phosphoric acid-meth-
acryloxy-hexylesters,
copolymer of acrylic
and itaconic acid, Bis-
GMA, HDDMA, HEMA,
DMAEMA, ethanol,
water, silane-treated
silica, phosphine
oxide, CQ

Apply for 20 s, gently
air-blow for approxi-
mately 5 s, and light-
cured for 10 s.

Filtek Z250 XT A3
(N588669 )

3M ESPE, Paul, USA – inorgranic filler (zirco-
nia/silica), resins (Bis-
GMA, UDMA, Bis-EMA,
PEGDMA, TEGDMA)

Place 2mm in two
increments and light-
cure for 40 s,
respectively.

iBond (010706,IB) Heraeus-Kulzer,
Hanau, Germany

�2
4-MET, UDMA, glutaral-
dehyde, acetone,
water, photoinitiators,
stabilizers

Apply for 20 s, gently
air-blow for approxi-
mately 5 s, and light-
cure for 10 s.

Charisma A3 (62002) – Bis-GMA,
Silicon dioxide

Place 2mm in two
increments and light-
cure for 40 s,
respectively.

Abbreviations: 10-MDP: 10-methacryloxydecyl dihydrogen phosphate; HEMA: 2-hydroxyethyl methacrylate; Bis-GMA:
Bisphenol A diglycidylmethacrylate; 4-MET: 4-methacryloxyethyl trimellitate anhydride; HDDMA:1,6-hexanediol dime-
thacrylate; DMAEMA: 2-dimethyl amino ethyl methacrylate; UDMA: Urethane Dimethacrylate; Bis-EMA: Bisphenol A
ethoxylated dimethacrylate; PEGDMA: (ethylene glycol) dimethacrylate; TEGDMA: triethylene glycol dimethacrylate.
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this study were that (1) prime-and-rinse approach using MDP-containing primer
before application of (ultra-) mild self-etch adhesives could not increase the enamel
bond strengths when compared with self-etch approach, and (2) even worse when
compared with (selective) enamel etching.

Materials and methods

Specimen preparation

An experimental primer containing 15% (w/w) of MDP was prepared by dissolving
10-MDP (Watson International Ltd, Jiangsu, China, Lot #WI12090678) in ethanol-
aqueous (1:1) solution. Sixty-nine extracted, non-carious human third molars stored
in 0.5% chloramine-T solution at 37 �C were used within one month after extraction
in this study. The research protocol was approved by the Institutional Ethics
Committee and performed in accordance with the international Ethical Guideline and
Declaration of Helsinki [34]. The teeth were stored in tap water for 24 h before the
buccal enamel surfaces of the teeth were polished with 320-grit SiC paper under run-
ning water in order to form a uniform smear layer. Sixty teeth were randomly div-
ided into three groups according to application approaches (n¼ 20). Group A
(control): The enamel surfaces were not further pre-treated serving as self-etch
approach. The enamel surfaces were etched with 37% phosphoric acid for 15 s
(Group B: (selective) enamel etching) or primed with 15% of MDP-containing primer
for 15 s (Group C: prime-and-rinse approach). Subsequently, they were all water-
sprayed for 30 s and gently dried. The enamel surfaces were applied with one of four
one-bottle self-etch adhesives and placed with the respective composite resins from
the same manufacturer strictly according to the manufacturer’s instructions. They
included Clearfil S3 Bond (S3) þ Clearfil Majesty, Kuraray-Noritake, Tokyo, Japan; G
Bond (GB) þ Gradia Direct, GC, Tokyo, Japan; Adper Easy One (AEO), 3M ESPE,
Seefeld, Germanyþ Filtek Z250, 3M ESPE, Paul, USA and i Bond (IB) þ Chrisma,
Heraeus-Kulzer, Hanau, Germany. All the materials and the steps of application used
in the study are summarized in Table 1. The composite resin was placed on the pre-
treated enamel surfaces in two 2-mm thick increments, and each light-cured for 40 s.
Light-curing was performed using a light-curing unit with an output of 1500mW/
cm2 (Radii Plus, SDI, Victoria, Australia).

Micro-tensile bond strength (MTBS) tests

After storage in distilled water for 24 h at 37 �C, forty-eight enamel-bonded specimens
were perpendicularly sectioned through the resin-enamel interfaces using a low-speed
saw (Isomet 1000, Buehler, Lake Bluff, IL, USA) under continuous water cooling.
They were prepared into multiple beams with a cross-section area of approximately
1.0mm2. A Micro Tensile Tester (Bisco Inc. Schaumburg, IL, USA) was used to per-
form the MTBS tests at a crosshead speed of 1mm/min until fracture. The dimension
of the fractured surface was measured with a resolution of 0.01mm using a pair of
digital vernier calipers (MNT-150, Meinaite, China). The specimens of pre-testing
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failures (PTFs) were excluded in this study. The MTBS were calculated in megapas-
cals (MPa).

Failure mode analysis

After the MTBS tests, the modes of failure were determined by stereomicroscopy
(OLYMPUS, SZ61, Japan) at a magnification of 50-fold. Failure modes were catego-
rized into (a) interfacial failure occurring either between the enamel and adhesive or
between adhesive and composite resin; (b) cohesive failure in composite resin (cohe-
sive resin); (c) cohesive failure occurring in the enamel or at the dentin-enamel junc-
tion (DEJ) (cohesive DEJ/enamel); (d) mixed failure occurring in adhesive, enamel
and composite resin [35].

Scanning electron microscopy (SEM)

Nine enamel segments (3mm � 3mm � 1mm) were obtained from buccal enamel
surfaces of another 9 teeth. The enamel surfaces were pre-treated as the above-men-
tioned three approaches (3 teeth each group) without applications of adhesives and
placement of composite resins. All the specimens were split through the middle of
the segments. The pre-treated enamel surfaces, the split enamel surfaces and two ran-
domly-selected, de-bonded specimens each subgroup after the MTBS tests were ana-
lyzed by an SEM (SU8010, Hitachi, Japan) after they were dehydrated with a series of
ascending concentrations of ethanol (30� 100%) and gold-sputtered.

Transmission electron microscopy (TEM)

Twelve resin-bonded enamel specimens, one per subgroup, were each cut into an
�0.5-mm thick slab including the resin-enamel interface during specimen sectioning.
All the slabs were fixed in Karnovsky’s fixative and post-fixed in 1% osmium tetrox-
ide. After fixation, they were desiccated in an ascending ethanol series (30–100%),
immersed in propylene oxide as a transition fluid for 4 h, and finally embedded in a
TEM grade epoxy resin. After the embedding resin was completely set, ultra-thin
non-demineralized sections (�70–90 nm thick) were obtained with a diamond knife
(Diatom, Biel, Switzerland). They were analyzed by TEM (JEOL JEM-1230, Tokyo,
Japan) at 100 kV.

Table 2. Mean enamel micro-tensile bond strengths (Means ± SD [median, n], MPa) in this study.
Adhesives Control Enamel etching Prime-and-rinse

IB 17.79 ± 7.84(16.33, 22)Aa 27.2 ± 7.84(26.84, 20)Ba 26.54 ± 6.21(27.03, 28)Ba

GB 17.87 ± 5.37(17.49, 28)Aa 29.76 ± 6.79(28.73, 33)Bab 27.77 ± 8.03(25.81, 32)Ba

S3 19.48 ± 6.71(17.69, 31)Aa 34.36 ± 8.86(37.60, 29)Bc 32.75 ± 10.06(31.85, 27)Bab

AEO 17.54 ± 6.88(17.61, 21)Aa 34.11 ± 10.43(30.73, 24)Babc 37.28 ± 9.28(35.17, 33)Bbc

Notes: The same lowercase/uppercase superscript letters in a vertical column/a horizontal row indicate no significant
differences (p> .05). The different lowercase/uppercase superscript letters in a vertical column/a horizontal row indi-
cate significant differences (p< .01). IB: I Bond; GB: G Bond; S3: Clearfil S3 Bond; AEO: Adper Easy One. n: the num-
bers of the beams for MTBS test.
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Statistical analysis

The normality and homoscedasticity assumption of the MTBS data was violated
(Shapiro–Wilk Test, p¼ .025 & Levene Test, p¼ .001). Statistical analysis was per-
formed using the Kruskal-Wallis test followed by post-hoc pairwise comparisons with
Bonferroni correction [36,37]. Chi-square (v2) test was used to analyze the failure
modes. The statistical analysis was performed with statistical analysis software pack-
age (SPSS 22.0, IBM Corp. New York, USA). The significance level was set a¼ 0.05.

Results

Micro-tensile bond strength (MTBS)

All the MTBS data are summarized in Table 2. There was no significant difference
between the enamel MTBS among the four adhesives in the control group (p> .05,
Table 2). Compared with the control group (Group A, self-etch approach), (selective)
enamel etching approach (Group B) and prime-and-rinse approach using 15% MDP-
containing primer (Group C) could significantly increase the enamel MTBS, regard-
less of the different adhesives used (p< .01, Tables 2 and 3). However, there was no
significant difference between the latter two (p> .05, Table 3).

Failure mode analysis

The failure modes in this study are shown in Figure 1. Most of the failure modes
were the mixed failure in this study (p< .001) except for adhesive S3 with the enamel
pre-treatment by prime-and-rinse approach. There were no significant differences of
the failure modes between (selective) enamel etching and prime-and-rinse approach
(p> .05). Overall, self-etch approach produced more adhesive failures than (selective)
enamel etching and prime-and-rinse approach (p< .001).

SEM

The micro-morphology of the differently-treated enamel surfaces is shown in Figure
(2). The polishing scratches are clearly observed on the polished enamel surface
(Figure 2(a)) and approximately 1.5–2lm of smear layer is on the split enamel sur-
face (Figure 2(b)) in the control group (Group A). In the (selective) enamel etching
(Group B), the etching enamel surface reveals typical enamel prism and interprism
(Figure 2(c)) without any visible enamel smear (Figure 2(d)). The enamel smear layer
was almost eliminated, enamel HAp crystallites were exposed and some monomer-Ca

Table 3. The pairwise comparisons between the three
different enamel pretreatments.
Pairwise Comparisons p values

Control vs. Enamel etching <.001
Control vs. Prime-and-rinse <.001
Enamel etching vs. Prime-and-rinse ¼1.000
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Figure 1. Failure modes analysis in this study. The predominant failure modes in all groups are
mixed failure except for adhesive S3 with the enamel pre-treatment by prime-and-rinse approach.
IB: I Bond; GB: G Bond; S3: Clearfil S3 Bond; AEO: Adper Easy One.

Figure 2. The SEM microphotographs of enamel surfaces and split enamel surface (magnification
¼ 10000 fold, bar ¼ 2lm). The polishing scratches (a) are visible on the polished enamel surface
with �1.5–2lm thick smear layer (between the dotted lines) on the split enamel surface (b). The
acid-etching enamel surface (c) reveal a distinct etching pattern with clear exposure of enamel
prism rods and no smear layer is visible on the split enamel surface (d). The smear layer is nearly
completely removed by prime-and-rinse approach using the MDP-containing primer (e and f),
exposing some HAp crystallites (white arrow), and scattered patches of MDP-Ca salts (black arrows)
remained on the enamel surfaces (e) resulting from the chemical interaction of MDP with
enamel HAp.

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY 7



salts remained on the enamel surfaces (Figure 2(e,f)) after the enamel surface was
treated with prime-and-rinse approach using MDP-containing primer (Group C).

The SEM micromorphology of the fractured surfaces of the de-bonded specimens
is shown in Figure (3). The SEM image shows the adhesive failure in the control
group and polishing scratches remained on the fractured surfaces of enamel site
(Figure 3(a)). Higher magnification micrographs show remnants of smear debris with
little exposure of enamel HAp crystallites. As for the enamel surfaces treated either
with acid-etching (Figure 3(b)) and the MDP-containing primer (Figure 3(c)), the
SEM images reveal mixed failures and higher magnification micrographs show lots of
enamel HAp crystallites on the fractured surfaces.

TEM

The TEM microphotographs reveal that ‘resin-smear complex’ could be found at the
adhesive-enamel interface in Group A (Figure 4(a–d)), but not in Group B (Figure
4(e–h)) and Group C (Figure 4(i–l)). No micro-gaps could be detected in all
the groups.

Discussion

The micro-tensile bond test is regarded as a reliable adhesion testing method that can
be used to evaluate the bond strength between an adhesive and a bonding substrate
[38]. The findings in this study revealed that all the adhesives used in self-etch
approach yielded similar bond strengths (Table 2, p> .05). The disparity of the
enamel bond strengths of the four self-etch adhesives in the previous reports could
be attributed to the different experimental conditions, different operators and differ-
ent enamel surface treatments [39–41].

Up to date, mild self-etch adhesives bonded to enamel have not been directly dem-
onstrated to resist the mechanical and chemical challenges in the oral cavity as the

Figure 3. Representative SEM images of the fractured surfaces. The inset images are the higher
magnifications of the marked areas in red boxes. In the control group, the failure mode is inter-
facial failure and the polishing scratches remained on the fractured surfaces of enamel site (a).
Higher magnification micrographs (inset in a) show remnants of smear debris with little exposure
of enamel HAp crystallites. As for the enamel surfaces pre-treated with acid-etching (b), or prime-
and-rinse approach using 15% MDP primer (c), the failure modes are mixed failure, higher magnifi-
cation micrographs (insets in b and c) show lots of enamel HAp crystallites on the fractured surfa-
ces. (a: control group; b: enamel etching group; c: prime-and-rinse group; magnification ¼ 1000
fold, bar ¼ 20lm; inset magnification ¼ 10,000�, bar ¼ 2lm).
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same as etch-and-rinse adhesives do [20]. The enamel bond durability of (ultra-)
mild self-etch adhesives still remains to be solved [42]. Thus, the improvement of the
enamel bond durability of mild and ultra-mild self-etch adhesives is still a great chal-
lenge for the dental materials researchers.

Figure 4. TEM images of adhesive-enamel interface (control group (Group A): a–d; selective etch-
ing group (Group B): e–h; prime-and-rinse group (Group C): i–l; a, e, i: i Bond; b, f, j: Adper Easy
One; c, g, k: Clearfil S3 Bond; d, h, l: G Bond; E: enamel; S: smear layer; A: adhesive; magnification
¼ 100,000�). A smear layer can be detected at the adhesive-enamel interface in control groups
(a–d) but cannot in groups B and C. No micro-gaps are detected in all the groups.

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY 9



Compared with the control group, the outcomes of the enamel MTBS test clearly
indicate that both prime-and-rinse approach and (selective) enamel etching could sig-
nificantly increase the short-term enamel MTBS, irrespective of the adhesives used
(p< .01, Tables 2 and 3), but there were no significant differences of the enamel
MTBS between the latter two (p> .05, Tables 2 and 3). Thus, the null hypotheses that
prime-and-rinse approach using MDP-containing primer prior to application of
(ultra-) mild self-etch adhesives would not improve the enamel MTBS when com-
pared with self-etch approach, and even worsen when compared with the (selective)
enamel etching were totally rejected.

Smear layer is a layer of debris compacted on the surfaces of dental hard tissues
created by bur-preparation and SiC-polishing [43,44]. This varies in roughness, dens-
ity, thickness and weak attachment to the underlying tooth structures, depending on
the dental instruments [42,44–47]. In order to create a uniform smear layer for the
enamel/dentin bond strength study, polishing with SiC paper is one of the most used
methods to prepare the tooth surfaces in numerous laboratory studies [48,49]. The
etching potential of (ultra-) mild self-etch adhesives is not as aggressive as that of
phosphoric acid etching, therefore, thick enamel smear layers remain a great chal-
lenge for mild self-etch adhesives [6]. This is consistent with the finding in this study
(Figure 4(a–d)). Numerous studies have investigated the influences of smear layer on
the enamel and dentin bonding performance of self-etch adhesives [42,50–56]. Smear
layers remained in the enamel surfaces might be an obstacle in the achievement of
reliable adhesion for mild self-etch adhesives [57–61]. Acid etching was able to com-
pletely eliminate the smear layer in this study (Figure 2(c–d)). The findings in this
study are completely in agreement with previous studies [53,62]. Moreover, the
enamel smear layer was almost completely removed by prime-and-rinse approach
(Figure 2(e–f)). All the tested adhesives in this study are classified into mild or ultra-
mild self-etch adhesives according to the aggressiveness (pH value) of self-etch adhe-
sives [15]. The adhesives used in this study were incapable of completely dissolving
the SiC-polishing enamel smear layer like acid etching. The TEM findings in this
study further demonstrated that ‘resin-smear complex’ was detectable at the enamel-
resin interface (Figure 4(a–d)). This may compromise the micromechanical interlock-
ing between adhesive resin and the underlying enamel [63]. Previous reports have
demonstrated that residual smear layer exists at the resin-enamel interface since
(ultra-) mild self-etch adhesives only create a shallow etching pattern on enamel
which results in a weak micromechanical retention [53,63]. The SEM microphoto-
graphs of the fractured surfaces in the control group reveal the remnants of smear
debris with little exposure of enamel HAp crystallites (Figure 3(a)). However, the
SEM microphotographs of the other two groups (enamel etching and prime-and-rinse
approach) show lots of enamel HAp crystallites exposed on the fractured surfaces
(Figure 3(b–c)). Furthermore, not only the smear layer has a rather weak bond to the
underlying enamel, but also the ‘resin-smear complex’ (Figure 4(a–d)) might result
from the resin incomplete infiltration into the smear layer [53]. Therefore, the ‘resin-
smear complex’ may become an initial point of bond deterioration [42]. It is
extremely important for resin monomers to completely penetrate the smear layers
and to form chemical bonding with the tooth hard tissue in order to achieve a
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reliable adhesion to enamel [42,62]. A firm micro- and nano-mechanical interlock
results from the networks penetrating through the inter-crystallites [63]. The TEM
microphotographs in this study reveal that the adhesives are tightly contacted with
the underlying enamel without any ‘resin-smear complex’ at the resin-enamel interfa-
ces when the prime-and-rinse approach and (selective) enamel etching used
(Figures (4(e–l)).

Moreover, some phosphoric acid esters such as MDP has been proven to have a
high chemical bonding potential to HAp, enamel and dentin within clinically reason-
able application time [3,25,27,30,59]. This chemical bondability has been demon-
strated to improve the short- and long-term enamel bond strength [25]. The previous
publications demonstrated that the additional chemical bonding of MDP surrounding
the enamel HAp crystallites could significantly increase the enamel bond strengths
[64–66]. Therefore, the enamel MTBS increase in this study should be attributed to
the elimination of the weak smear layer as well as the additional chemical bonding.

The selective enamel etching is strongly recommended to improve enamel bond
durablity when mild or ultra-mild self-etch adhesives used [15–17]. However, etchants
would inadvertently flow over the peripheral enamel margins into dentin surfaces
that would jeopardize the dentin bond [5,18,19]. Our preliminary study revealed that
the prime-and-rinse approach using MDP-containing primer could improve the den-
tin bonding performance [33]. Furthermore, the prime-and-rinse approach using
MDP-containing primer in this study could achieve the enamel MTBS similar to
(selective) enamel etching.

Taken together, prime-and-rinse approach using the MDP-containing primer could
nearly completely remove the enamel smear layer as well as produce some insoluble
monomer-Ca salts (MDP-Ca salts) on the enamel. That might be explained by the
fact that MDP-Ca salts chemisorbed on the enamel substrate could greatly improve
the wetting ability of self-etching adhesives and create potential chemical bonding
sites on the primed enamel surfaces. It might be the reason that prime-and-rinse
approach could achieve a similar enamel MTBS to (selective) enamel etching.
Therefore, prime-and-rinse approach using MDP-containing primer is an alternative
to selective enamel etching before application of ultra-mild and mild self-etch adhe-
sives. However, its long-term bond performance needs a further study.

Conclusion

Within the limits of this in vitro study, prime-and-prime approaching using 15%
MDP-containing primer could remove the enamel smear layer, and greatly improve
the enamel bond strengths prior to application of (ultra-) mild self-etch adhesives.
Hence, the novel prime-and-rinse approach might be an alternative to selective
enamel etching when (ultra-) mild self-etch adhesive used.
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